
The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions,

searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments

regarding this burden estimate or any other aspect of this collection of information, including suggesstions for reducing this burden, to Washington

Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA, 22202-4302.

Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any oenalty for failing to comply with a collection of

information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

a. REPORT

Avoiding Local Optimawith Interactive Evolutionary Robotics

14. ABSTRACT

16. SECURITY CLASSIFICATION OF:

The main bottleneck in evolutionary robotics has traditionally been the time required to evolve robot controllers.

However with the continued acceleration in computational resources, the main bottleneck is now the time required

for an investigator to create a robot simulator, a neural network, evolutionary algorithm and fitness function that

together produce the desired behavior. Here we introduce a software framework that allows a user to conduct

evolutionary robotics experiments without having to write any software themselves: the user defines the robot

1. REPORT DATE (DD-MM-YYYY)

4. TITLE AND SUBTITLE

13-09-2012

13. SUPPLEMENTARY NOTES

The views, opinions and/or findings contained in this report are those of the author(s) and should not contrued as an official Department

of the Army position, policy or decision, unless so designated by other documentation.

12. DISTRIBUTION AVAILIBILITY STATEMENT

Approved for public release; distribution is unlimited.

UU

9. SPONSORING/MONITORING AGENCY NAME(S) AND

ADDRESS(ES)

6. AUTHORS

7. PERFORMING ORGANIZATION NAMES AND ADDRESSES

U.S. Army Research Office

 P.O. Box 12211

 Research Triangle Park, NC 27709-2211

15. SUBJECT TERMS

Evolutionary Robotics, Interactive Evolutionary Algorithms,Evolutionary Algorithms

Josh Bongard, Paul Beliveau, Gregory Hornby

University of California - Santa Cruz

Office of Sponsored Projects

The Regents of the University of California, Santa Cruz

Santa Cruz, CA 95064 -1077

REPORT DOCUMENTATION PAGE

b. ABSTRACT

UU

c. THIS PAGE

UU

2. REPORT TYPE

Conference Proceeding

17. LIMITATION OF

ABSTRACT

UU

15. NUMBER

OF PAGES

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

5c. PROGRAM ELEMENT NUMBER

5b. GRANT NUMBER

5a. CONTRACT NUMBER

W911NF-11-1-0076

0620BK

Form Approved OMB NO. 0704-0188

59647-MS-DRP.5

11. SPONSOR/MONITOR'S REPORT

NUMBER(S)

10. SPONSOR/MONITOR'S ACRONYM(S)

 ARO

8. PERFORMING ORGANIZATION REPORT

NUMBER

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER

Gregory Hornby

650-604-3373

3. DATES COVERED (From - To)

Standard Form 298 (Rev 8/98)

Prescribed by ANSI Std. Z39.18

-

Avoiding Local Optimawith Interactive Evolutionary Robotics

Report Title

ABSTRACT

The main bottleneck in evolutionary robotics has traditionally been the time required to evolve robot controllers.

However with the continued acceleration in computational resources, the main bottleneck is now the time required

for an investigator to create a robot simulator, a neural network, evolutionary algorithm and fitness function that

together produce the desired behavior. Here we introduce a software framework that allows a user to conduct

evolutionary robotics experiments without having to write any software themselves: the user defines the robot

morphology, task environment and fitness function interactively; a neural network is constructed based on the robot’s

morphology; and an evolutionary algorithm optimizes desired behavior. We here show that this approach allows

users to overcome one of the main limitations of evolutionary algorithms—recognizing and then preventing

entrapment in local optima—in a continuous, code free manner.

Conference Name: Genetic and Evolutionary Computation Conference

Conference Date: July 09, 2012

Avoiding Local Optima
with Interactive Evolutionary Robotics

Josh C. Bongard
Dept. of Computer Science

University of Vermont
josh.bongard@uvm.edu

Paul Beliveau
Dept. of Computer Science

University of Vermont
paul.beliveau@uvm.edu

Gregory S. Hornby
Univ. of California Santa Cruz
NASA Ames Research Center
gregory.s.hornby@nasa.gov

ABSTRACT
The main bottleneck in evolutionary robotics has tradition-
ally been the time required to evolve robot controllers. How-
ever with the continued acceleration in computational re-
sources, the main bottleneck is now the time required for
an investigator to create a robot simulator, a neural net-
work, evolutionary algorithm and fitness function that to-
gether produce the desired behavior. Here we introduce
a software framework that allows a user to conduct evo-
lutionary robotics experiments without having to write any
software themselves: the user defines the robot morphol-
ogy, task environment and fitness function interactively; a
neural network is constructed based on the robot’s mor-
phology; and an evolutionary algorithm optimizes desired
behavior. We here show that this approach allows users
to overcome one of the main limitations of evolutionary
algorithms—recognizing and then preventing entrapment in
local optima—in a continuous, code free manner.

Categories and Subject Descriptors
I.2.9 [Computing Methodologies]: Artificial Intelligence—
Robotics

General Terms
Experimentation, Algorithms

Keywords
Evolutionary Robotics, Interactive Evolutionary Algorithms,
Evolutionary Algorithms

1. INTRODUCTION
Typically in evolutionary robotics, the investigator takes

considerable time to program a simulation, controller and
evolutionary algorithm. After evolution commences she then
alternates between short bursts of optimization and re- engi-
neering of the fitness function. One approach to reduce the
number of these design cycles is to use interactive evolution
(e.g. [2] and [1]) in which the user rather than the computer
determines which solutions breed and which are culled. Here
we present a novel method of combining user input and evo-
lutionary algorithms that does not require continuously re-

Copyright is held by the author/owner(s).
GECCO’12 Companion, July 7–11, 2012, Philadelphia, PA, USA.
ACM 978-1-4503-1178-6/12/07.

programming a fitness function nor does it require the user
to continuously supply preferences.

2. METHODS
Typically, an investigator directs an evolutionary algo-

rithm to select for different robot behaviors by modifying
a fitness function. For instance a fitness fitness that selects
for locomotion in a legged robot may reward for displace-
ment over a fixed time period. Changing the fitness function
to reward for maximal vertical distance between the robot’s
feet and the ground will select for jumping. In the approach
described here, the fitness remains fixed, but the user can
direct evolution toward different behaviors by altering the
task environment of the robot.

This is accomplished by allowing the user to interact di-
rectly with the physics-based simulator in which the robots
are evolved. The user is presented with a simulated robot
and a light-emitting object (shown as a red cube in Fig.
1)1. The user drags a copy of the robot to another posi-
tion within the simulator, which indicates where the robot
should move to by the end of the evaluation period. Each
component in each copy of the robot contains a photosensor
(the gray spheres embedded in the robots in Fig. 1) that
registers light intensity.

The fitness function for all experiments reported here can
then be defined as

f = 1−

∑n

i=1

∑t

j=1 |p
(s)
ij − p

(e)
ij |

nt
(1)

where the robot is evaluated in the simulator for t time steps;

the robot is constructed from n components; p
(s)
ij is the value

of the ith photosensor at time j for the robot at the start

position; and p
(e)
ij is the value of the ith photosensor at time

j for the robot at the end position.
We define the photosensor values to range in [0, 1] such

that a sensor value of zero indicates the sensor is at or be-
yond some maximal distance from the light-emitting object,
and a value of one indicates that the sensor is coincident with
the object. This then constrains the fitness value f to also
range in [0, 1]. A fitness value of zero means that the robot
has remained at the start position or moved away from the
end position. A fitness value of 1 indicates that the robot
has moved instantaneously to the end position and remained
there throughout the evaluation period. Higher fitness val-
ues indicate controllers that have moved the robot closer to

1Several videos that accompany this paper can be found at
bit.ly/IyN8qr.

a b

c d

Figure 1: Interactive application of robot shaping.

the light-emitting object—or moved the robot more rapidly
to the same position—compared to controllers with lower
fitness values.

Using this framework the user can interactively create dif-
ferent environments that select for different behaviors: plac-
ing the target object at the top of a flight of stairs selects for
climbing; suspending the robot and the target object above
the ground and creating rungs between the two will select
for brachiation (see the accompanying videos).

Users may also elect to incorporate robot shaping [3] while
evolving controllers: controllers may initially be evolved in
a single environment and, after success, evolved in multiple
environments. This is shown in the locomotion example re-
ported in Fig. 1. Because the robot and the light-emitting
object are on the ground (the end position of the robot is
not shown for clarity) and there are no intervening obsta-
cles, this task environment selects for locomotion toward
the object (Fig. 1a). Later, the user may create a second
task environment (illustrated by the two light-emitting ob-
jects in Fig. 1b) at which point controllers are evaluated
against both environments and the fitness of a controller is
now computed as

F =

∑k

i=1 fi

k
(2)

where the controller is evaluated in k task environments and
fi denotes fitness in the ith environment (Eqn. 1).

3. RESULTS
To test robot shaping using the system, locomotion toward

the light-emitting object was first selected for (Fig. 1a).
Once successful locomotion was achieved, a second task

environment was added (Fig. 1b) by copying the origi-
nal task environment—the start-position robot, the end-
position robot and the object—and moving the object in
the second environment slightly to the right, along with the
end-position robot (not shown). After a short period of evo-
lution the controllers became mired in a local optimum: an
easy solution for evolution to find is to ignore the photosen-
sors and instead produce an effectively open-loop controller
that causes the robot to locomote in the same manner in
both environments. This is illustrated in Fig. 1b by the fact

that there is only one locomotion trajectory even though the
controller was evaluated twice.

This local optimum was removed by dragging the light-
emitting object in the second environment further to the
right. This reduced the fitness of controllers that ignore
the photosensors and allowed for the evolution of controllers
that use the photosensors to alter the robot’s trajectory to-
ward the object. Thus after a short subsequent period of
evolution a controller was discovered that allowed success-
ful travel toward both placements of the light-emitting ob-
ject (Fig. 1c). A third task environment was created and
evolution continued until success was achieved, and finally a
fourth environment was constructed and a controller evolved
that succeeded in all four environments (Fig. 1d).

This experiment illustrates how a user can lead optimiza-
tion out of local optima by altering the robot’s task environ-
ment rather than altering the fitness function. The ability
to construct different robot morphologies was added to the
system, and a second robot was constructed with the ability
to brachiate. This robot also became mired in a local op-
timum: it found a way to swing up between the rungs and
‘walk’ over the top of them. The user interactively guided
evolution out of this optimum by placing barriers above the
rungs, thus forcing the robot to evolve the ability to swing
from one rung to the next (see the accompanying videos).

4. CONCLUSIONS
Code-free robotics promises to provide a novel entry point

for students interested in the field. We have tested the sys-
tem with undergraduate students who have had 14 weeks of
formal instruction in evolutionary robotics. Many of them
were able to construct a robot morphology and task envi-
ronment, and evolve successful behaviors for them in a 50
minute period. In future work we wish to expand the social
aspect of the system. It may be that multiple users collabo-
rating on the same robot design—or alternatively forking off
novel designs of their own—may uncover more local optima
than an equal number of users working independently.

Acknowledgments
This work was supported by Defense Advanced Research
Program Agency Grant W911NF-1-11-0076 and National
Science Foundation Grant PECASE-0953837.

5. REFERENCES
[1] J. Clune and H. Lipson. Evolving three-dimensional

objects with a generative encoding inspired by
developmental biology. In Proceedings of the European

Conference on Artificial Life, pages 144–148, 2011.

[2] R. Dawkins. The Blind Watchmaker. Harlow Longman,
1986.

[3] M. Dorigo and M. Colombetti. Robot Shaping:
Developing Autonomous Agents Through Learning.
Artificial Intelligence, 71(2):321–370, 1994.

